
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 29. October 2018

Markus Püschel, David Steurer

Algorithms & Data Structures Homework 6 HS 18

Exercise Class (Room & TA):

Submitted by:

Peer Feedback by:

Points:

Exercise 6.1 iPhone Drop Test (1 Point for Part 4).

You just got a new job at Apple in the department of destructive testing. The �rst task given is to test

the endurance of the new iPhone XR series. Speci�cally you need to determine the highest �oor that

the new iPhone can withstand when dropped out of the window.

When the phone is dropped and does not break, it is undamaged and can be dropped again. For sim-

plicity assume that subsequent drops of the phone do not a�ect its endurance (i.e. if it survives it will

have the identical state as if it weren’t dropped at all). However, once the iPhone has been broken, you

can no longer use it for another test.

If the phone breaks when dropped from �oor n, then it would also have broken from any �oor above

that. If the phone survives a fall, then it will survive any fall below that.

As this is your �rst responsibility at your new job, you want to impress your new boss, and deliver

results as soon as possible. To achieve that, you devise a strategy to minimize the number of drop tests

required to �nd the solution.

1. What strategy would you use if only one phone is given and you perform the drop test on a

building with n �oors? What are the maximum number of drop tests that you have to perform?

2. What if we are given unlimited amount of identical phones?

3. What if we are given exactly 2 identical phones and the number of �oors n is �xed such that

n = 100?.

4. Assume that you are given 3 identical phones and a building with n �oors. Determine the best

search strategy for the �oor where the phone breaks and give the number of drops in big-Θ
notation. There is no need to prove that is best but only asymptotically optimal algorithms count.

Exercise 6.2 Simple sorting.

1. Perform two iterations of Bubble Sort on the following array. The array has already been partially

sorted by previous iterations (after the double bar). By iterations we mean iterations of outer loop.

You should only write two arrays corresponding to the end of �rst and second iterations.



9 5 8 13 15 10 11 7 6 20 21 35

1 2 3 4 5 6 7 8 9 10 11 12

2. Perform two iterations of Selection Sort on the following array. The array has already been parti-

ally sorted by previous iterations (up to the double bar). By iterations we mean iterations of outer

loop. You should only write two arrays corresponding to the end of �rst and second iterations.

2 3 5 6 15 17 22 8 16 12 13 10

1 2 3 4 5 6 7 8 9 10 11 12

Exercise 6.3 Inverse questions.

1. Give a sequence of 5 numbers for which Bubble Sort performs exactly 10 swaps of keys in order

to sort the sequence.

2. For all n > 1 give a sequence of n numbers for which Bubble Sort performs Θ(n
√
n) swaps of

keys in order to sort the sequence.

3. Assume that Selection Sort does not swap elements with the same index. For all n > 1 give a

sequence of n numbers for which Selection Sort performs exactly 1 swap of keys in order to sort

the sequence, but Bubble Sort and Insertion Sort perform at least Ω(n) swaps of keys.

4. For all n > 1 give a sequence of n numbers for which Bubble Sort, Selection Sort and Insertion

Sort perform Θ(n) swaps of keys in order to sort the sequence.

Exercise 6.4 Loop invariant (1 Point).

Consider the pseudocode of the MaxSubarraySum algorithm on an integer array a[0, . . . , n−1], n ≥ 1.

procedure MaxSubarraySum(a)

randmax← 0
max← 0
for 0 ≤ i < n do

randmax← randmax + a[i]
if randmax > max then

max← randmax

if randmax < 0 then
randmax← 0

return max

Find a loop invariant INV such that:

1. INV(0) holds before the execution of the loop.

2. If INV(i) holds at the beginning of a loop iteration, then INV(i + 1) holds at the end of the loop

iteration. Prove this.

3. INV(n) implies the correct solution.

2



Exercise 6.5 TCP: Determine the maximum bandwidth (1 Point).

When transferring a large �le over the internet, you want the �le to arrive as fast as possible at the

receiver. For this, the TCP protocol must determine the maximum bandwidth (e.g., measured in number

of characters per second) which is available between sender and receiver. The available bandwidth is

in general unlimited, time-dependent, and di�erent for each transmitter-receiver pair. In this exercise,

the task is to design a procedure (an algorithm) that is as e�cient as possible to determine the available

bandwidth.

For simplicity, we assume that during a connection the available bandwidth remains constant. The TCP

protocol sends the data in each time unit with a bandwidth selected by the server. If the actual available

bandwidth is su�cient (i.e., higher than the selected one), then the data arrives at the receiver. The re-

ceiver sends in this case indirectly before the end of the unit of time a con�rmation back (the so-called

Acknowledgement). If the bandwidth selected by the server has exceeded the available bandwidth, then

the data sent in this time unit will be lost. The server detects this case by not receiving an acknowledg-

ment from the receiver at the end of the time unit. So in each time unit one bandwidth can be tested

by the server.

Design a procedure whereby the TCP protocol at the server determines the available bandwidth in as

few time units as possible. What is the asymptotic number O(f(b)) of time units needed to compute

the bandwidth b? (Assume that b > 0 is an integer.) Is your algorithm asymptotically optimal?

Submission: On Monday, 06.11.2018, hand in your solution to your TA before the exercise class starts.

3


